Skip to content

Vearch

VearchVectorStore #

Bases: VectorStore

Vearch vector store

embeddings are stored within a Vearch table. when query, the index uses Vearch to query for the top k most similar nodes.

Parameters:

Name Type Description Default
chroma_collection Collection

ChromaDB collection instance

required
Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-vearch/llama_index/vector_stores/vearch/base.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
class VearchVectorStore(VectorStore):
    """
    Vearch vector store:
        embeddings are stored within a Vearch table.
        when query, the index uses Vearch to query for the top
        k most similar nodes.

    Args:
        chroma_collection (chromadb.api.models.Collection.Collection):
            ChromaDB collection instance
    """

    flat_metadata: bool = True
    stores_text: bool = True
    _DEFAULT_TABLE_NAME = "llama_index_vearch"
    _DEFAULT_CLUSTER_DB_NAME = "llama_index_vearch_client_db"

    def __init__(
        self,
        path_or_url: Optional[str] = None,
        table_name: str = _DEFAULT_TABLE_NAME,
        db_name: str = _DEFAULT_CLUSTER_DB_NAME,
        **kwargs: Any,
    ) -> None:
        """Initialize vearch vector store."""
        try:
            import vearch_cluster
        except ImportError:
            raise ValueError(
                "Could not import suitable python package."
                "Please install it with `pip install vearch_cluster."
            )

        if path_or_url is None:
            raise ValueError("Please input url of cluster")
        if not db_name:
            db_name = self._DEFAULT_CLUSTER_DB_NAME
            db_name += "_"
            db_name += str(uuid.uuid4()).split("-")[-1]
        self.using_db_name = db_name
        self.url = path_or_url
        self.vearch = vearch_cluster.VearchCluster(path_or_url)
        if not table_name:
            table_name = self._DEFAULT_TABLE_NAME
            table_name += "_"
            table_name += str(uuid.uuid4()).split("-")[-1]
        self.using_table_name = table_name

    @property
    def client(self) -> Any:
        """Get client."""
        return self.vearch

    def _get_matadata_field(self, metadatas: Optional[List[dict]] = None) -> None:
        field_list = []
        if metadatas:
            for key, value in metadatas[0].items():
                if isinstance(value, int):
                    field_list.append({"field": key, "type": "int"})
                    continue
                if isinstance(value, str):
                    field_list.append({"field": key, "type": "str"})
                    continue
                if isinstance(value, float):
                    field_list.append({"field": key, "type": "float"})
                    continue
                else:
                    raise ValueError("Please check data type,support int, str, float")
        self.field_list = field_list

    def _add_texts(
        self,
        ids: Iterable[str],
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        embeddings: Optional[List[List[float]]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """
        Returns:
            List of ids from adding the texts into the vectorstore.
        """
        if embeddings is None:
            raise ValueError("embeddings is None")
        self._get_matadata_field(metadatas)
        dbs_list = self.vearch.list_dbs()
        if self.using_db_name not in dbs_list:
            create_db_code = self.vearch.create_db(self.using_db_name)
            if not create_db_code:
                raise ValueError("create db failed!!!")
        space_list = self.vearch.list_spaces(self.using_db_name)
        if self.using_table_name not in space_list:
            create_space_code = self._create_space(len(embeddings[0]))
            if not create_space_code:
                raise ValueError("create space failed!!!")
        docid = []
        if embeddings is not None and metadatas is not None:
            meta_field_list = [i["field"] for i in self.field_list]
            for text, metadata, embed, id_d in zip(texts, metadatas, embeddings, ids):
                profiles: typing.Dict[str, Any] = {}
                profiles["ref_doc_id"] = id_d
                profiles["text"] = text
                for f in meta_field_list:
                    profiles[f] = metadata[f]
                embed_np = np.array(embed)
                profiles["text_embedding"] = {
                    "feature": (embed_np / np.linalg.norm(embed_np)).tolist()
                }
                insert_res = self.vearch.insert_one(
                    self.using_db_name, self.using_table_name, profiles
                )
                if insert_res["status"] == 200:
                    docid.append(insert_res["_id"])
                    continue
                else:
                    retry_insert = self.vearch.insert_one(
                        self.using_db_name, self.using_table_name, profiles
                    )
                    docid.append(retry_insert["_id"])
                    continue
        return docid

    def _create_space(
        self,
        dim: int = 1024,
    ) -> int:
        """
        Create Cluster VectorStore space.

        Args:
            dim:dimension of vector.

        Return:
            code,0 failed for ,1 for success.
        """
        type_dict = {"int": "integer", "str": "string", "float": "float"}
        space_config = {
            "name": self.using_table_name,
            "partition_num": 1,
            "replica_num": 1,
            "engine": {
                "index_size": 1,
                "retrieval_type": "HNSW",
                "retrieval_param": {
                    "metric_type": "InnerProduct",
                    "nlinks": -1,
                    "efConstruction": -1,
                },
            },
        }
        tmp_proer = {
            "ref_doc_id": {"type": "string"},
            "text": {"type": "string"},
            "text_embedding": {
                "type": "vector",
                "index": True,
                "dimension": dim,
                "store_type": "MemoryOnly",
            },
        }
        for item in self.field_list:
            tmp_proer[item["field"]] = {"type": type_dict[item["type"]]}
        space_config["properties"] = tmp_proer

        return self.vearch.create_space(self.using_db_name, space_config)

    def add(
        self,
        nodes: List[BaseNode],
        **add_kwargs: Any,
    ) -> List[str]:
        if not self.vearch:
            raise ValueError("Vearch Engine is not initialized")

        embeddings = []
        metadatas = []
        ids = []
        texts = []
        for node in nodes:
            embeddings.append(node.get_embedding())
            metadatas.append(
                node_to_metadata_dict(
                    node, remove_text=True, flat_metadata=self.flat_metadata
                )
            )
            ids.append(node.node_id)
            texts.append(node.get_content(metadata_mode=MetadataMode.NONE) or "")

        return self._add_texts(
            ids=ids,
            texts=texts,
            metadatas=metadatas,
            embeddings=embeddings,
        )

    def query(
        self,
        query: VectorStoreQuery,
        **kwargs: Any,
    ) -> VectorStoreQueryResult:
        """
        Query index for top k most similar nodes.

        Args:
            query : vector store query.

        Returns:
            VectorStoreQueryResult: Query results.
        """
        meta_filters = {}
        if query.filters is not None:
            for filter_ in query.filters.legacy_filters():
                meta_filters[filter_.key] = filter_.value
        if self.flag:
            meta_field_list = self.vearch.get_space(
                self.using_db_name, self.using_table_name
            )
            meta_field_list.remove("text_embedding")
        embed = query.query_embedding
        if embed is None:
            raise ValueError("query.query_embedding is None")
        k = query.similarity_top_k
        query_data = {
            "query": {
                "sum": [
                    {
                        "field": "text_embedding",
                        "feature": (embed / np.linalg.norm(embed)).tolist(),
                    }
                ],
            },
            "retrieval_param": {"metric_type": "InnerProduct", "efSearch": 64},
            "size": k,
            "fields": meta_field_list,
        }
        query_result = self.vearch.search(
            self.using_db_name, self.using_table_name, query_data
        )
        res = query_result["hits"]["hits"]
        nodes = []
        similarities = []
        ids = []
        for item in res:
            content = ""
            meta_data = {}
            node_id = ""
            score = item["_score"]
            item = item["_source"]
            for item_key in item:
                if item_key == "text":
                    content = item[item_key]
                    continue
                elif item_key == "_id":
                    node_id = item[item_key]
                    ids.append(node_id)
                    continue
                meta_data[item_key] = item[item_key]
            similarities.append(score)
            try:
                node = metadata_dict_to_node(meta_data)
                node.set_content(content)
            except Exception:
                metadata, node_info, relationships = legacy_metadata_dict_to_node(
                    meta_data
                )
                node = TextNode(
                    text=content,
                    id_=node_id,
                    metadata=metadata,
                    start_char_idx=node_info.get("start", None),
                    end_char_idx=node_info.get("end", None),
                    relationships=relationships,
                )
            nodes.append(node)
        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

    def _delete(
        self,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> None:
        """
        Delete the documents which have the specified ids.

        Args:
            ids: The ids of the embedding vectors.
            **kwargs: Other keyword arguments that subclasses might use.

        Returns:
            Optional[bool]: True if deletion is successful.
            False otherwise, None if not implemented.
        """
        if ids is None or len(ids) == 0:
            return
        for _id in ids:
            queries = {
                "query": {
                    "filter": [{"term": {"ref_doc_id": [_id], "operator": "and"}}]
                },
                "size": 10000,
            }
            self.vearch.delete_by_query(
                self, self.using_db_name, self.using_table_name, queries
            )

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        Returns:
            None
        """
        if len(ref_doc_id) == 0:
            return
        ids: List[str] = []
        ids.append(ref_doc_id)
        self._delete(ids)

client property #

client: Any

Get client.

query #

query(query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult

Query index for top k most similar nodes.

Parameters:

Name Type Description Default
query

vector store query.

required

Returns:

Name Type Description
VectorStoreQueryResult VectorStoreQueryResult

Query results.

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-vearch/llama_index/vector_stores/vearch/base.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def query(
    self,
    query: VectorStoreQuery,
    **kwargs: Any,
) -> VectorStoreQueryResult:
    """
    Query index for top k most similar nodes.

    Args:
        query : vector store query.

    Returns:
        VectorStoreQueryResult: Query results.
    """
    meta_filters = {}
    if query.filters is not None:
        for filter_ in query.filters.legacy_filters():
            meta_filters[filter_.key] = filter_.value
    if self.flag:
        meta_field_list = self.vearch.get_space(
            self.using_db_name, self.using_table_name
        )
        meta_field_list.remove("text_embedding")
    embed = query.query_embedding
    if embed is None:
        raise ValueError("query.query_embedding is None")
    k = query.similarity_top_k
    query_data = {
        "query": {
            "sum": [
                {
                    "field": "text_embedding",
                    "feature": (embed / np.linalg.norm(embed)).tolist(),
                }
            ],
        },
        "retrieval_param": {"metric_type": "InnerProduct", "efSearch": 64},
        "size": k,
        "fields": meta_field_list,
    }
    query_result = self.vearch.search(
        self.using_db_name, self.using_table_name, query_data
    )
    res = query_result["hits"]["hits"]
    nodes = []
    similarities = []
    ids = []
    for item in res:
        content = ""
        meta_data = {}
        node_id = ""
        score = item["_score"]
        item = item["_source"]
        for item_key in item:
            if item_key == "text":
                content = item[item_key]
                continue
            elif item_key == "_id":
                node_id = item[item_key]
                ids.append(node_id)
                continue
            meta_data[item_key] = item[item_key]
        similarities.append(score)
        try:
            node = metadata_dict_to_node(meta_data)
            node.set_content(content)
        except Exception:
            metadata, node_info, relationships = legacy_metadata_dict_to_node(
                meta_data
            )
            node = TextNode(
                text=content,
                id_=node_id,
                metadata=metadata,
                start_char_idx=node_info.get("start", None),
                end_char_idx=node_info.get("end", None),
                relationships=relationships,
            )
        nodes.append(node)
    return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

Delete nodes using with ref_doc_id.

Parameters:

Name Type Description Default
ref_doc_id str

The doc_id of the document to delete.

required

Returns:

Type Description
None

None

Source code in llama-index-integrations/vector_stores/llama-index-vector-stores-vearch/llama_index/vector_stores/vearch/base.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    Returns:
        None
    """
    if len(ref_doc_id) == 0:
        return
    ids: List[str] = []
    ids.append(ref_doc_id)
    self._delete(ids)