List Index
Building the List Index
List-based data structures.
- class llama_index.indices.list.GPTListIndex(nodes: Optional[Sequence[Node]] = None, index_struct: Optional[IndexList] = None, service_context: Optional[ServiceContext] = None, **kwargs: Any)
GPT List Index.
The list index is a simple data structure where nodes are stored in a sequence. During index construction, the document texts are chunked up, converted to nodes, and stored in a list.
During query time, the list index iterates through the nodes with some optional filter parameters, and synthesizes an answer from all the nodes.
- Parameters
text_qa_template (Optional[QuestionAnswerPrompt]) – A Question-Answer Prompt (see Prompt Templates). NOTE: this is a deprecated field.
- classmethod from_documents(documents: Sequence[Document], storage_context: Optional[StorageContext] = None, service_context: Optional[ServiceContext] = None, **kwargs: Any) IndexType
Create index from documents.
- Parameters
documents (Optional[Sequence[BaseDocument]]) – List of documents to build the index from.
- property index_id: str
Get the index struct.
- refresh(documents: Sequence[Document], **update_kwargs: Any) List[bool]
Refresh an index with documents that have changed.
This allows users to save LLM and Embedding model calls, while only updating documents that have any changes in text or extra_info. It will also insert any documents that previously were not stored.
- set_index_id(index_id: str) None
Set the index id.
NOTE: if you decide to set the index_id on the index_struct manually, you will need to explicitly call add_index_struct on the index_store to update the index store.
- Parameters
index_id (str) – Index id to set.
- update(document: Document, **update_kwargs: Any) None
Update a document.
This is equivalent to deleting the document and then inserting it again.
- Parameters
document (Union[BaseDocument, BaseGPTIndex]) – document to update
insert_kwargs (Dict) – kwargs to pass to insert
delete_kwargs (Dict) – kwargs to pass to delete
- class llama_index.indices.list.ListIndexEmbeddingRetriever(index: GPTListIndex, similarity_top_k: Optional[int] = 1, **kwargs: Any)
Embedding based retriever for ListIndex.
Generates embeddings in a lazy fashion for all nodes that are traversed.
- Parameters
index (GPTListIndex) – The index to retrieve from.
similarity_top_k (Optional[int]) – The number of top nodes to return.
- retrieve(str_or_query_bundle: Union[str, QueryBundle]) List[NodeWithScore]
Retrieve nodes given query.
- Parameters
str_or_query_bundle (QueryType) – Either a query string or a QueryBundle object.
- class llama_index.indices.list.ListIndexRetriever(index: GPTListIndex, **kwargs: Any)
Simple retriever for ListIndex that returns all nodes.
- Parameters
index (GPTListIndex) – The index to retrieve from.
- retrieve(str_or_query_bundle: Union[str, QueryBundle]) List[NodeWithScore]
Retrieve nodes given query.
- Parameters
str_or_query_bundle (QueryType) – Either a query string or a QueryBundle object.