Faiss Vector Store
Creating a Faiss Index
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import faiss
# dimensions of text-ada-embedding-002
d = 1536
faiss_index = faiss.IndexFlatL2(d)
Load documents, build the VectorStoreIndex
from llama_index import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.faiss import FaissVectorStore
from IPython.display import Markdown, display
# load documents
documents = SimpleDirectoryReader("../paul_graham_essay/data").load_data()
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
# save index to disk
index.storage_context.persist()
# load index from disk
vector_store = FaissVectorStore.from_persist_dir("./storage")
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir="./storage"
)
index = load_index_from_storage(storage_context=storage_context)
Query Index
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
display(Markdown(f"<b>{response}</b>"))
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do after his time at Y Combinator?")
display(Markdown(f"<b>{response}</b>"))