Knowledge Graph Retrieverο
KGTable Retriever.
- class llama_index.indices.knowledge_graph.retrievers.KGRetrieverMode(value)ο
Query mode enum for Knowledge Graphs.
Can be passed as the enum struct, or as the underlying string.
- KEYWORDο
Default query mode, using keywords to find triplets.
- Type
βkeywordβ
- EMBEDDINGο
Embedding mode, using embeddings to find similar triplets.
- Type
βembeddingβ
- HYBRIDο
Hyrbid mode, combining both keywords and embeddings to find relevant triplets.
- Type
βhybridβ
- class llama_index.indices.knowledge_graph.retrievers.KGTableRetriever(index: KnowledgeGraphIndex, query_keyword_extract_template: Optional[Prompt] = None, max_keywords_per_query: int = 10, num_chunks_per_query: int = 10, include_text: bool = True, retriever_mode: Optional[KGRetrieverMode] = KGRetrieverMode.KEYWORD, similarity_top_k: int = 2, **kwargs: Any)ο
KG Table Retriever.
Arguments are shared among subclasses.
- Parameters
query_keyword_extract_template (Optional[QueryKGExtractPrompt]) β A Query KG Extraction Prompt (see Prompt Templates).
refine_template (Optional[RefinePrompt]) β A Refinement Prompt (see Prompt Templates).
text_qa_template (Optional[QuestionAnswerPrompt]) β A Question Answering Prompt (see Prompt Templates).
max_keywords_per_query (int) β Maximum number of keywords to extract from query.
num_chunks_per_query (int) β Maximum number of text chunks to query.
include_text (bool) β Use the document text source from each relevant triplet during queries.
retriever_mode (KGRetrieverMode) β Specifies whether to use keyowrds, embeddings, or both to find relevant triplets. Should be one of βkeywordβ, βembeddingβ, or βhybridβ.
similarity_top_k (int) β The number of top embeddings to use (if embeddings are used).
- retrieve(str_or_query_bundle: Union[str, QueryBundle]) List[NodeWithScore] ο
Retrieve nodes given query.
- Parameters
str_or_query_bundle (QueryType) β Either a query string or a QueryBundle object.