Joint QA Summary Query Engine

import nest_asyncio
nest_asyncio.apply()
import logging
import sys

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.composability.joint_qa_summary import QASummaryQueryEngineBuilder
from llama_index import SimpleDirectoryReader, ServiceContext, LLMPredictor
from llama_index.response.notebook_utils import display_response
from langchain.chat_models import ChatOpenAI
reader = SimpleDirectoryReader('../paul_graham_essay/data')
documents = reader.load_data()
llm_predictor_gpt4 = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name="gpt-4"))
service_context_gpt4 = ServiceContext.from_defaults(llm_predictor=llm_predictor_gpt4, chunk_size=1024)

llm_predictor_chatgpt = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo"))
service_context_chatgpt = ServiceContext.from_defaults(llm_predictor=llm_predictor_chatgpt, chunk_size=1024)
WARNING:llama_index.llm_predictor.base:Unknown max input size for gpt-3.5-turbo, using defaults.
Unknown max input size for gpt-3.5-turbo, using defaults.
# NOTE: can also specify an existing docstore, service context, summary text, qa_text, etc.
query_engine_builder = QASummaryQueryEngineBuilder(service_context=service_context_gpt4)
query_engine = query_engine_builder.build_from_documents(documents)
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens
> [build_index_from_nodes] Total LLM token usage: 0 tokens
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 20729 tokens
> [build_index_from_nodes] Total embedding token usage: 20729 tokens
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens
> [build_index_from_nodes] Total LLM token usage: 0 tokens
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 0 tokens
> [build_index_from_nodes] Total embedding token usage: 0 tokens
response = query_engine.query(
    "Can you give me a summary of the author's life?", 
)
INFO:llama_index.query_engine.router_query_engine:Selecting query engine 1 because: This choice is relevant because it is specifically for summarization queries, which matches the request for a summary of the author's life..
Selecting query engine 1 because: This choice is relevant because it is specifically for summarization queries, which matches the request for a summary of the author's life..
INFO:llama_index.indices.common_tree.base:> Building index from nodes: 6 chunks
> Building index from nodes: 6 chunks
INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 1012 tokens
> [get_response] Total LLM token usage: 1012 tokens
INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens
> [get_response] Total embedding token usage: 0 tokens
INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 23485 tokens
> [get_response] Total LLM token usage: 23485 tokens
INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens
> [get_response] Total embedding token usage: 0 tokens
response = query_engine.query(
    "What did the author do growing up?", 
)
INFO:llama_index.query_engine.router_query_engine:Selecting query engine 0 because: This choice is relevant because it involves retrieving specific context from documents, which is needed to answer the question about the author's activities growing up..
Selecting query engine 0 because: This choice is relevant because it involves retrieving specific context from documents, which is needed to answer the question about the author's activities growing up..
INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens
> [retrieve] Total LLM token usage: 0 tokens
INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 8 tokens
> [retrieve] Total embedding token usage: 8 tokens
INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 1893 tokens
> [get_response] Total LLM token usage: 1893 tokens
INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens
> [get_response] Total embedding token usage: 0 tokens
response = query_engine.query(
    "What did the author do during his time in art school?", 
)
INFO:llama_index.query_engine.router_query_engine:Selecting query engine 0 because: This choice is relevant because it involves retrieving specific context from documents, which is needed to answer the question about the author's activities in art school..
Selecting query engine 0 because: This choice is relevant because it involves retrieving specific context from documents, which is needed to answer the question about the author's activities in art school..
INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens
> [retrieve] Total LLM token usage: 0 tokens
INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 12 tokens
> [retrieve] Total embedding token usage: 12 tokens
INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 1883 tokens
> [get_response] Total LLM token usage: 1883 tokens
INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens
> [get_response] Total embedding token usage: 0 tokens