Make Reader
We show how LlamaIndex can fit with your Make.com workflow by sending the GPT Index response to a scenario webhook.
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index import VectorStoreIndex, SimpleDirectoryReader
from llama_index.readers import MakeWrapper
documents = SimpleDirectoryReader("../paul_graham_essay/data").load_data()
index = VectorStoreIndex.from_documents(documents=documents)
# set Logging to DEBUG for more detailed outputs
# query index
query_str = "What did the author do growing up?"
query_engine = index.as_query_engine()
response = query_engine.query(query_str)
# Send response to Make.com webhook
wrapper = MakeWrapper()
wrapper.pass_response_to_webhook(
"<webhook_url>,
response,
query_str
)