Vector Stores

Vector stores contain embedding vectors of ingested document chunks (and sometimes the document chunks as well).

Simple Vector Store

By default, LlamaIndex uses a simple in-memory vector store that’s great for quick experimentation. They can be persisted to (and loaded from) disk by calling vector_store.persist() (and SimpleVectorStore.from_persist_path(...) respectively).

Vector Store Options & Feature Support

LlamaIndex supports over 20 different vector store options. We are actively adding more integrations and improving feature coverage for each.

Vector Store

Type

Metadata Filtering

Hybrid Search

Delete

Store Documents

Async

Elasticsearch

self-hosted / cloud

βœ“

βœ“

βœ“

βœ“

βœ“

Pinecone

cloud

βœ“

βœ“

βœ“

βœ“

Timescale

βœ“

βœ“

βœ“

βœ“

Weaviate

self-hosted / cloud

βœ“

βœ“

βœ“

βœ“

Postgres

self-hosted / cloud

βœ“

βœ“

βœ“

βœ“

βœ“

Cassandra

self-hosted / cloud

βœ“

βœ“

βœ“

Qdrant

self-hosted / cloud

βœ“

βœ“

βœ“

Chroma

self-hosted

βœ“

βœ“

βœ“

Milvus / Zilliz

self-hosted / cloud

βœ“

βœ“

βœ“

Typesense

self-hosted / cloud

βœ“

βœ“

βœ“

Supabase

self-hosted / cloud

βœ“

βœ“

βœ“

MongoDB Atlas

self-hosted / cloud

βœ“

βœ“

βœ“

Redis

self-hosted / cloud

βœ“

βœ“

βœ“

Deeplake

self-hosted / cloud

βœ“

βœ“

βœ“

OpenSearch

self-hosted / cloud

βœ“

βœ“

βœ“

Neo4jVector

self-hosted / cloud

βœ“

βœ“

Azure Cognitive Search

cloud

βœ“

βœ“

βœ“

DynamoDB

cloud

βœ“

LanceDB

cloud

βœ“

βœ“

βœ“

Metal

cloud

βœ“

βœ“

βœ“

MyScale

cloud

βœ“

βœ“

βœ“

Tair

cloud

βœ“

βœ“

βœ“

Simple

in-memory

βœ“

βœ“

FAISS

in-memory

ChatGPT Retrieval Plugin

aggregator

βœ“

βœ“

DocArray

aggregator

βœ“

βœ“

βœ“

For more details, see Vector Store Integrations.