Using Vector Stores
LlamaIndex offers multiple integration points with vector stores / vector databases:
LlamaIndex can use a vector store itself as an index. Like any other index, this index can store documents and be used to answer queries.
LlamaIndex can load data from vector stores, similar to any other data connector. This data can then be used within LlamaIndex data structures.
Using a Vector Store as an Index
LlamaIndex also supports different vector stores
as the storage backend for VectorStoreIndex
.
Azure Cognitive Search (
CognitiveSearchVectorStore
). QuickstartApache Cassandra® and compatible databases such as Astra DB (
CassandraVectorStore
)Chroma (
ChromaVectorStore
) InstallationEpsilla (
EpsillaVectorStore
) Installation/QuickstartDeepLake (
DeepLakeVectorStore
) InstallationElasticsearch (
ElasticsearchStore
) InstallationQdrant (
QdrantVectorStore
) Installation Python ClientWeaviate (
WeaviateVectorStore
). Installation. Python Client.Zep (
ZepVectorStore
). Installation. Python Client.Pinecone (
PineconeVectorStore
). Installation/Quickstart.Faiss (
FaissVectorStore
). Installation.Milvus (
MilvusVectorStore
). InstallationZilliz (
MilvusVectorStore
). QuickstartMyScale (
MyScaleVectorStore
). Quickstart. Installation/Python Client.Supabase (
SupabaseVectorStore
). Quickstart.DocArray (
DocArrayHnswVectorStore
,DocArrayInMemoryVectorStore
). Installation/Python Client.MongoDB Atlas (
MongoDBAtlasVectorSearch
). Installation/Quickstart.Redis (
RedisVectorStore
). Installation.Neo4j (
Neo4jVectorIndex
). Installation.TimeScale (
TimescaleVectorStore
). Installation.
A detailed API reference is found here.
Similar to any other index within LlamaIndex (tree, keyword table, list), VectorStoreIndex
can be constructed upon any collection
of documents. We use the vector store within the index to store embeddings for the input text chunks.
Once constructed, the index can be used for querying.
Default Vector Store Index Construction/Querying
By default, VectorStoreIndex
uses a in-memory SimpleVectorStore
that’s initialized as part of the default storage context.
from llama_index import VectorStoreIndex, SimpleDirectoryReader
# Load documents and build index
documents = SimpleDirectoryReader('../paul_graham_essay/data').load_data()
index = VectorStoreIndex.from_documents(documents)
# Query index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
Custom Vector Store Index Construction/Querying
We can query over a custom vector store as follows:
from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext
from llama_index.vector_stores import DeepLakeVectorStore
# construct vector store and customize storage context
storage_context = StorageContext.from_defaults(
vector_store = DeepLakeVectorStore(dataset_path="<dataset_path>")
)
# Load documents and build index
documents = SimpleDirectoryReader('../paul_graham_essay/data').load_data()
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
# Query index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
Below we show more examples of how to construct various vector stores we support.
Elasticsearch
First, you can start Elasticsearch either locally or on Elastic cloud.
To start Elasticsearch locally with docker, run the following command:
docker run -p 9200:9200 \
-e "discovery.type=single-node" \
-e "xpack.security.enabled=false" \
-e "xpack.security.http.ssl.enabled=false" \
-e "xpack.license.self_generated.type=trial" \
docker.elastic.co/elasticsearch/elasticsearch:8.9.0
Then connect and use Elasticsearch as a vector database with LlamaIndex
from llama_index.vector_stores import ElasticsearchStore
vector_store = ElasticsearchStore(
index_name="llm-project",
es_url="http://localhost:9200",
# Cloud connection options:
# es_cloud_id="<cloud_id>",
# es_user="elastic",
# es_password="<password>",
)
This can be used with the VectorStoreIndex
to provide a query interface for retrieval, querying, deleting, persisting the index, and more.
Redis
First, start Redis-Stack (or get url from Redis provider)
docker run --name redis-vecdb -d -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
Then connect and use Redis as a vector database with LlamaIndex
from llama_index.vector_stores import RedisVectorStore
vector_store = RedisVectorStore(
index_name="llm-project",
redis_url="redis://localhost:6379",
overwrite=True
)
This can be used with the VectorStoreIndex
to provide a query interface for retrieval, querying, deleting, persisting the index, and more.
DeepLake
import os
import getpath
from llama_index.vector_stores import DeepLakeVectorStore
os.environ["OPENAI_API_KEY"] = getpath.getpath("OPENAI_API_KEY: ")
os.environ["ACTIVELOOP_TOKEN"] = getpath.getpath("ACTIVELOOP_TOKEN: ")
dataset_path = "hub://adilkhan/paul_graham_essay"
# construct vector store
vector_store = DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True)
Faiss
import faiss
from llama_index.vector_stores import FaissVectorStore
# create faiss index
d = 1536
faiss_index = faiss.IndexFlatL2(d)
# construct vector store
vector_store = FaissVectorStore(faiss_index)
...
# NOTE: since faiss index is in-memory, we need to explicitly call
# vector_store.persist() or storage_context.persist() to save it to disk.
# persist() takes in optional arg persist_path. If none give, will use default paths.
storage_context.persist()
Weaviate
import weaviate
from llama_index.vector_stores import WeaviateVectorStore
# creating a Weaviate client
resource_owner_config = weaviate.AuthClientPassword(
username="<username>",
password="<password>",
)
client = weaviate.Client(
"https://<cluster-id>.semi.network/", auth_client_secret=resource_owner_config
)
# construct vector store
vector_store = WeaviateVectorStore(weaviate_client=client)
Zep
Zep stores texts, metadata, and embeddings. All are returned in search results.
from llama_index.vector_stores import ZepVectorStore
vector_store = ZepVectorStore(
api_url="<api_url>",
api_key="<api_key>",
collection_name="<unique_collection_name>", # Can either be an existing collection or a new one
embedding_dimensions=1536 # Optional, required if creating a new collection
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
# Query index using both a text query and metadata filters
filters = MetadataFilters(filters=[ExactMatchFilter(key="theme", value="Mafia")])
retriever = index.as_retriever(filters=filters)
result = retriever.retrieve("What is inception about?")
Pinecone
import pinecone
from llama_index.vector_stores import PineconeVectorStore
# Creating a Pinecone index
api_key = "api_key"
pinecone.init(api_key=api_key, environment="us-west1-gcp")
pinecone.create_index(
"quickstart",
dimension=1536,
metric="euclidean",
pod_type="p1"
)
index = pinecone.Index("quickstart")
# can define filters specific to this vector index (so you can
# reuse pinecone indexes)
metadata_filters = {"title": "paul_graham_essay"}
# construct vector store
vector_store = PineconeVectorStore(
pinecone_index=index,
metadata_filters=metadata_filters
)
Qdrant
import qdrant_client
from llama_index.vector_stores import QdrantVectorStore
# Creating a Qdrant vector store
client = qdrant_client.QdrantClient(
host="<qdrant-host>",
api_key="<qdrant-api-key>",
https=True
)
collection_name = "paul_graham"
# construct vector store
vector_store = QdrantVectorStore(
client=client,
collection_name=collection_name,
)
Cassandra (covering DataStax Astra DB as well, which is built on Cassandra)
from cassandra.cluster import Cluster
from cassandra.auth import PlainTextAuthProvider
from llama_index.vector_stores import CassandraVectorStore
# for a Cassandra cluster:
cluster = Cluster(["127.0.0.1"])
# for an Astra DB cloud instance:
cluster = Cluster(
cloud={"secure_connect_bundle": "/home/USER/secure-bundle.zip"},
auth_provider=PlainTextAuthProvider("token", "AstraCS:...")
)
#
session = cluster.connect()
keyspace = "my_cassandra_keyspace"
vector_store = CassandraVectorStore(
session=session,
keyspace=keyspace,
table="llamaindex_vector_test_1",
embedding_dimension=1536,
#insertion_batch_size=50, # optional
)
Chroma
import chromadb
from llama_index.vector_stores import ChromaVectorStore
# Creating a Chroma client
# EphemeralClient operates purely in-memory, PersistentClient will also save to disk
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
# construct vector store
vector_store = ChromaVectorStore(
chroma_collection=chroma_collection,
)
Epsilla
from pyepsilla import vectordb
from llama_index.vector_stores import EpsillaVectorStore
# Creating an Epsilla client
epsilla_client = vectordb.Client()
# Construct vector store
vector_store = EpsillaVectorStore(client=epsilla_client)
Note: EpsillaVectorStore
depends on the pyepsilla
library and a running Epsilla vector database.
Use pip/pip3 install pyepsilla
if not installed yet.
A running Epsilla vector database could be found through docker image.
For complete instructions, see the following documentation:
https://epsilla-inc.gitbook.io/epsilladb/quick-start
Milvus
Milvus Index offers the ability to store both Documents and their embeddings.
import pymilvus
from llama_index.vector_stores import MilvusVectorStore
# construct vector store
vector_store = MilvusVectorStore(
uri='https://localhost:19530',
overwrite='True'
)
Note: MilvusVectorStore
depends on the pymilvus
library.
Use pip install pymilvus
if not already installed.
If you get stuck at building wheel for grpcio
, check if you are using python 3.11
(there’s a known issue: https://github.com/milvus-io/pymilvus/issues/1308)
and try downgrading.
Zilliz
Zilliz Cloud (hosted version of Milvus) uses the Milvus Index with some extra arguments.
import pymilvus
from llama_index.vector_stores import MilvusVectorStore
# construct vector store
vector_store = MilvusVectorStore(
uri='foo.vectordb.zillizcloud.com',
token="your_token_here"
overwrite='True'
)
Note: MilvusVectorStore
depends on the pymilvus
library.
Use pip install pymilvus
if not already installed.
If you get stuck at building wheel for grpcio
, check if you are using python 3.11
(there’s a known issue: https://github.com/milvus-io/pymilvus/issues/1308)
and try downgrading.
MyScale
import clickhouse_connect
from llama_index.vector_stores import MyScaleVectorStore
# Creating a MyScale client
client = clickhouse_connect.get_client(
host='YOUR_CLUSTER_HOST',
port=8443,
username='YOUR_USERNAME',
password='YOUR_CLUSTER_PASSWORD'
)
# construct vector store
vector_store = MyScaleVectorStore(
myscale_client=client
)
Timescale
from llama_index.vector_stores import TimescaleVectorStore
vector_store = TimescaleVectorStore.from_params(
service_url='YOUR TIMESCALE SERVICE URL',
table_name="paul_graham_essay",
)
DocArray
from llama_index.vector_stores import (
DocArrayHnswVectorStore,
DocArrayInMemoryVectorStore,
)
# construct vector store
vector_store = DocArrayHnswVectorStore(work_dir='hnsw_index')
# alternatively, construct the in-memory vector store
vector_store = DocArrayInMemoryVectorStore()
MongoDBAtlas
# Provide URI to constructor, or use environment variable
import pymongo
from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
from llama_index.indices.vector_store.base import VectorStoreIndex
from llama_index.storage.storage_context import StorageContext
from llama_index.readers.file.base import SimpleDirectoryReader
# mongo_uri = os.environ["MONGO_URI"]
mongo_uri = "mongodb+srv://<username>:<password>@<host>?retryWrites=true&w=majority"
mongodb_client = pymongo.MongoClient(mongo_uri)
# construct store
store = MongoDBAtlasVectorSearch(mongodb_client)
storage_context = StorageContext.from_defaults(vector_store=store)
uber_docs = SimpleDirectoryReader(input_files=["../data/10k/uber_2021.pdf"]).load_data()
# construct index
index = VectorStoreIndex.from_documents(uber_docs, storage_context=storage_context)
Neo4j
Neo4j stores texts, metadata, and embeddings and can be customized to return graph data in the form of metadata.
from llama_index.vector_stores import Neo4jVectorStore
# construct vector store
neo4j_vector = Neo4jVectorStore(
username="neo4j",
password="pleaseletmein",
url="bolt://localhost:7687",
embed_dim=1536
)
Azure Cognitive Search
from azure.search.documents import SearchClient
from llama_index.vector_stores import ChromaVectorStore
from azure.core.credentials import AzureKeyCredential
service_endpoint = f"https://{search_service_name}.search.windows.net"
index_name = "quickstart"
cognitive_search_credential = AzureKeyCredential("<API key>")
search_client = SearchClient(
endpoint=service_endpoint,
index_name=index_name,
credential=cognitive_search_credential,
)
# construct vector store
vector_store = CognitiveSearchVectorStore(
search_client,
id_field_key="id",
chunk_field_key="content",
embedding_field_key="embedding",
metadata_field_key="li_jsonMetadata",
doc_id_field_key="li_doc_id",
)
Loading Data from Vector Stores using Data Connector
LlamaIndex supports loading data from the following sources. See Data Connectors for more details and API documentation.
Chroma stores both documents and vectors. This is an example of how to use Chroma:
from llama_index.readers.chroma import ChromaReader
from llama_index.indices import SummaryIndex
# The chroma reader loads data from a persisted Chroma collection.
# This requires a collection name and a persist directory.
reader = ChromaReader(
collection_name="chroma_collection",
persist_directory="examples/data_connectors/chroma_collection"
)
query_vector=[n1, n2, n3, ...]
documents = reader.load_data(collection_name="demo", query_vector=query_vector, limit=5)
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
display(Markdown(f"<b>{response}</b>"))
Qdrant also stores both documents and vectors. This is an example of how to use Qdrant:
from llama_index.readers.qdrant import QdrantReader
reader = QdrantReader(host="localhost")
# the query_vector is an embedding representation of your query_vector
# Example query_vector
# query_vector = [0.3, 0.3, 0.3, 0.3, ...]
query_vector = [n1, n2, n3, ...]
# NOTE: Required args are collection_name, query_vector.
# See the Python client: https;//github.com/qdrant/qdrant_client
# for more details
documents = reader.load_data(collection_name="demo", query_vector=query_vector, limit=5)
NOTE: Since Weaviate can store a hybrid of document and vector objects, the user may either choose to explicitly specify class_name
and properties
in order to query documents, or they may choose to specify a raw GraphQL query. See below for usage.
# option 1: specify class_name and properties
# 1) load data using class_name and properties
documents = reader.load_data(
class_name="<class_name>",
properties=["property1", "property2", "..."],
separate_documents=True
)
# 2) example GraphQL query
query = """
{
Get {
<class_name> {
<property1>
<property2>
}
}
}
"""
documents = reader.load_data(graphql_query=query, separate_documents=True)
NOTE: Both Pinecone and Faiss data loaders assume that the respective data sources only store vectors; text content is stored elsewhere. Therefore, both data loaders require that the user specifies an id_to_text_map
in the load_data call.
For instance, this is an example usage of the Pinecone data loader PineconeReader
:
from llama_index.readers.pinecone import PineconeReader
reader = PineconeReader(api_key=api_key, environment="us-west1-gcp")
id_to_text_map = {
"id1": "text blob 1",
"id2": "text blob 2",
}
query_vector=[n1, n2, n3, ..]
documents = reader.load_data(
index_name="quickstart", id_to_text_map=id_to_text_map, top_k=3, vector=query_vector, separate_documents=True
)
Example notebooks can be found here.
Examples
- Elasticsearch
- Simple Vector Store
- Simple Vector Stores - Maximum Marginal Relevance Retrieval
- Redis Vector Store
- Query the data
- Working with Metadata
- Qdrant Vector Store
- Faiss Vector Store
- DeepLake Vector Store
- MyScale Vector Store
- Metal Vector Store
- Weaviate Vector Store
- Zep Vector Store
- Create a Zep Vector Store and Index
- Querying with Metadata filters
- Opensearch Vector Store
- Pinecone Vector Store
- Cassandra Vector Store
- Chroma
- Epsilla Vector Store
- LanceDB Vector Store
- Milvus Vector Store
- Weaviate Vector Store - Hybrid Search
- Pinecone Vector Store - Hybrid Search
- Simple Vector Store - Async Index Creation
- Supabase Vector Store
- DocArray Hnsw Vector Store
- DocArray InMemory Vector Store
- MongoDB Atlas
- Postgres Vector Store
- Awadb Vector Store
- Neo4j vector store
- Azure Cognitive Search
- Basic Example
- Create Index (if it does not exist)
- Use Existing Index
- Adding a document to existing index
- Filtering
- Timescale Vector Store (PostgreSQL)