Query Transformο
Query Transforms.
- class llama_index.indices.query.query_transform.DecomposeQueryTransform(llm_predictor: Optional[BaseLLMPredictor] = None, decompose_query_prompt: Optional[PromptTemplate] = None, verbose: bool = False)ο
Decompose query transform.
Decomposes query into a subquery given the current index struct. Performs a single step transformation.
- Parameters
llm_predictor (Optional[LLMPredictor]) β LLM for generating hypothetical documents
- run(query_bundle_or_str: Union[str, QueryBundle], metadata: Optional[Dict] = None) QueryBundle ο
Run query transform.
- class llama_index.indices.query.query_transform.HyDEQueryTransform(llm_predictor: Optional[BaseLLMPredictor] = None, hyde_prompt: Optional[BasePromptTemplate] = None, include_original: bool = True)ο
Hypothetical Document Embeddings (HyDE) query transform.
It uses an LLM to generate hypothetical answer(s) to a given query, and use the resulting documents as embedding strings.
As described in [Precise Zero-Shot Dense Retrieval without Relevance Labels] (https://arxiv.org/abs/2212.10496)
- run(query_bundle_or_str: Union[str, QueryBundle], metadata: Optional[Dict] = None) QueryBundle ο
Run query transform.
- class llama_index.indices.query.query_transform.StepDecomposeQueryTransform(llm_predictor: Optional[BaseLLMPredictor] = None, step_decompose_query_prompt: Optional[PromptTemplate] = None, verbose: bool = False)ο
Step decompose query transform.
Decomposes query into a subquery given the current index struct and previous reasoning.
NOTE: doesnβt work yet.
- Parameters
llm_predictor (Optional[LLMPredictor]) β LLM for generating hypothetical documents
- run(query_bundle_or_str: Union[str, QueryBundle], metadata: Optional[Dict] = None) QueryBundle ο
Run query transform.