Replicate๏
- pydantic model llama_index.llms.replicate.Replicate๏
Show JSON schema
{ "title": "Replicate", "description": "Simple abstract base class for custom LLMs.\n\nSubclasses must implement the `__init__`, `complete`,\n `stream_complete`, and `metadata` methods.", "type": "object", "properties": { "callback_manager": { "title": "Callback Manager" }, "model": { "title": "Model", "description": "The Replicate model to use.", "type": "string" }, "temperature": { "title": "Temperature", "description": "The temperature to use for sampling.", "type": "number" }, "context_window": { "title": "Context Window", "description": "The maximum number of context tokens for the model.", "type": "integer" }, "prompt_key": { "title": "Prompt Key", "description": "The key to use for the prompt in API calls.", "type": "string" }, "additional_kwargs": { "title": "Additional Kwargs", "description": "Additonal kwargs for the Replicate API.", "type": "object" } }, "required": [ "model", "temperature", "context_window", "prompt_key" ] }
- Config
arbitrary_types_allowed: bool = True
- Fields
- Validators
_validate_callback_manager
ยปcallback_manager
- field additional_kwargs: Dict[str, Any] [Optional]๏
Additonal kwargs for the Replicate API.
- field context_window: int [Required]๏
The maximum number of context tokens for the model.
- field model: str [Required]๏
The Replicate model to use.
- field prompt_key: str [Required]๏
The key to use for the prompt in API calls.
- field temperature: float [Required]๏
The temperature to use for sampling.
- chat(messages: Sequence[ChatMessage], **kwargs: Any) Any ๏
Chat endpoint for LLM.
- classmethod class_name() str ๏
Get class name.
- complete(*args: Any, **kwargs: Any) Any ๏
Completion endpoint for LLM.
- stream_chat(messages: Sequence[ChatMessage], **kwargs: Any) Any ๏
Streaming chat endpoint for LLM.
- stream_complete(*args: Any, **kwargs: Any) Any ๏
Streaming completion endpoint for LLM.
- property metadata: LLMMetadata๏
LLM metadata.